

Berechnung des Wärmedurchgangkoeffizienten - Uw

Auftraggeber	Die Venstermacher	Adresse	Raiffeisenstraße 54 A-6713 Ludesch	÷
--------------	-------------------	---------	---------------------------------------	---

Bezeichnung	78	Identifikation	Holz - Alufenster78 MM
Rahmenmaterial	Holz-Alu	Abmessungen	Breite 1230 mm Höhe 1480 mm

Produktnorm	ON EN 14351-1	Prüfvorschrift	ON EN ISO 10077-1 ON EN ISO 10077-2	
-------------	---------------	----------------	--	--

Glasfüllung U ₉		Abstandhalt		Rahmen U _f	Fenster U _w
[W/(m²·K)]		Mittelwe [W/(m·K		Mittelwert [W/(m²·K)]	[W/(m²-K)]
[**/(111 *K/]	1000			[44/(111 - 14/]	[44/(111-10/)
		Fichte, Tanne, Ki	efer $\lambda = 0.13$		
		Chromatech	0,059		0838
3-Scheibenisolierglas	0,50	Swisspacer	0,051	1,134	0,821
		Thermix TX.N	0,042		0,801
		Fichte, Tanne	λ=0,11		
		Chromatech	0,059		0,802
3-Scheibenisolierglas	0,50	Swisspacer	0,051	1,016	0,785
		Thermix TX.N	0,042		0,765
		Lärche λ=	0,15		
		Chromatech	0,059		0,871
3-Scheibenisolierglas	0,50	Swisspacer	0,051	1,244	0,854
		Thermix TX.N	0,042		0,834

Dieser Bericht ersetzt den Prüfbericht Nr. 09/286_02 vom 20.04.2009. LAB

Akkr. Pr und Inspektionsstelle gbd L www.gbd-lab.at Stein A-6850 Dornbirn

Das Deckblatt kann als Kurzfassung verwendet werden.

Wir behalten alle Rechte in diesem Dokument und in den Informationen vor, die darin enthalten sind. Missbraud Weitergabe an dritte Parteien ist ohne ausdrückliche Berechtigung verboten. Prüfbericht Version: *02* Anlagen: -1-

Prüfbericht

Wärmedurchgangskoeffizient nach EN ISO 10077 Teil 2 im akkreditierten Bereich

Prüfstelle	gbd LAB GmbH akkreditierte Prüf- und Inspektionsstelle	Adresse	Steinebach 13a A-6850 Dornbirn
Akkreditierung	Bundesministerium für Wirtschaft und Arbeit Nr. 270	Akkreditiert nach	EN ISO/IEC 17025 EN ISO/IEC 17020 Typ A
Notified Body	Nr. 2065	Bauproduktenrichtlinie	89/106/EWG

Prüfmittel	Rechenprogramm flixo5	Prüfanweisung	PA 105_02
Normabweichungen	keine	Randbedingungen	Entsprechend den Normanforderungen

1 Aufgabenstellung

Die venstermacher beauftragte die gbd LAB GmbH mit der Berechnung des Wärmedurchgangskoeffizienten (Uw-Wert) für Fensterelemente mit verschiedenen Randabstandhaltern und Holzarten.

2 Verwendungshinweise

Dieser Prüfbericht dient zum Nachweis der oben genannten Eigenschaften ausschließlich für das geprüfte und beschriebene Element. Dieser Prüfbericht umfasst nicht alle in der Produktnorm angeführte Leistungseigenschaften.

Diese Prüfung ermöglicht keine Aussage über weitere leistungs- und qualitätsbestimmenden Eigenschaften der vorliegenden Konstruktion, insbesondere Witterungs- und Alterungserscheinungen wurden nicht berücksichtigt.

3 Mitgeltende Normen

ON EN ISO10077-1:2006-12-01 Wärmetechnisches Verhalten von Fenstern, Türen

> und Abschlüssen - Berechnung des Wärmedurchgangskoeffizienten

Teil 1: Allgemeines

ON EN ISO 10077-2:2008-12-01 Wärmetechnisches Verhalten von Fenstern, Türen

> und Abschlüssen - Berechnung des Wärmedurchgangskoeffizienten

Teil 2: Numerisches Verfahren für Rahmen

4 Zur Verfügung gestellte Unterlagen

Vom Auftraggeber wurden folgende Unterlagen zur Verfügung gestellt:

- Detailpläne und Schnittzeichnungen vom 02.04.2009
- Materialspezifikation

Anlage -1-

5 Werte für die Berechnungen

Herkunft der verwendeten Werte

Glas Ug Werte nach Angabe Auftraggeber

Abstandhalter Ψ_{g} Werte It. Angabe Rahmen Uf Werte It. Berechnung

Anlage -1- Berechnung Ur Werte

6 Berechnung des Wärmedurchgangkoeffizienten

Die Darstellungen der Profilquerschnitte stammen aus den Unterlagen des Auftraggebers. Die zugehörigen Simulationsmodelle wurden durch die gbd Lab erstellt.

Ergebnisse

Rahmen

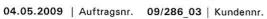
$$U_{f} = \frac{A_{f, o}U_{f, o} + A_{f, s}U_{f, s} + A_{f, u}U_{f, u} + A_{f, m}U_{f, m}}{A_{f, o} + A_{f, s} + A_{f, u} + A_{f, m}}$$

Element

$$Uw = \frac{A_gU_g + A_fU_f + I_g\Psi_g}{A_g + A_f}$$

Fichte, Tanne, Kiefer $\lambda = 0.13$

Außenmaße	Breite	1,230	[m]		33 - 101 - 38-1-1		
	Höhe	1,480	[m]				
Glas	Dreischeibe	nisolierglas					
	U_g	0,5	[W/(m ² K)]				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	[m ²]	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	[m ²]	
	b _{unten}	0,110	[m]	A _{unten}	0,1353	[m ²]	
	b _{mitte}	0,000	[m]	A_{mitte}	0,0000	[m ²]	
U _f	$U_f,oben$	1,1340	$[W/(m^2K)]$				
	$U_{f,seitlich}$	1,1340	$[W/(m^2K)]$				
	$U_{f,unten}$	1,1340	$[W/(m^2K)]$				
	$U_{f,mitte}$	0,0000	$[W/(m^2K)]$				
Abstandhalter	Chromatech	n .					
	$\Psi_{g,oben}$	0,0590	[W/(mK)]	I _{g,oben}	1,0100	[m]	
	$\Psi_{g,seitlich}$	0,0590	[W/(mK)]	I _{g,seitlich}	2,5200	[m]	
	$\Psi_{g,unten}$	0,0590	[W/(mK)]	I _{g,unten}	1,0100	[m]	
	$\Psi_{g,\text{mitte}}$	0,0000	[W/(mK)]	$I_{g,mitte}$	0,0000	[m]	
u _w	Ug	Ag	A _f	I_g	Ψ_{g}	Uf	U _w
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0590	1,1340	0,8379


Außenmaße	Breite	1,230	[m]	-		70	
Ausennase			37/31/0/2010				
	Höhe	1,480	[m]				
Glas	Dreischeibe	nisolierglas					
	U_g	0,5	[W/(m ² K)]				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	$[m^2]$	3
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	$[m^2]$	
	b _{unten}	0,110	[m]	A _{unten}	0,1353	$[m^2]$	
	b _{mitte}	0,000	[m]	A _{mitte}	0,0000	$[m^2]$	
U _t	$U_{f,oben}$	1,1340	$[W/(m^2K)]$				
	U _{f,seitlich}	1,1340	$[W/(m^2K)]$				
	$U_{f,unten}$	1,1340	$[W/(m^2K)]$				
	$U_{f,mitte}$	0,0000	$[W/(m^2K)]$				
Abstandhalter	Swisspacer						
	$\Psi_{g,oben}$	0,0520	[W/(mK)]	$I_{g,oben}$	1,0100	[m]	
	$\Psi_{g,seitlich}$	0,0520	[W/(mK)]	g,seitlich	2,5200	[m]	
	$\Psi_{g,unten}$	0,0520	[W/(mK)]	l _{g,unten}	1,0100	[m]	
	$\Psi_{\text{g,mitte}}$	0,0000	[W/(mK)]	l _{g,mitte}	0,0000	[m]	
υ _w	Ug	Ag	A _f	l _g	Ψ_{g}	U _f	U _w
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0520	1,1340	0,8205

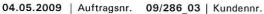
Außenmaße	Breite	1,230	[m]				1
	Höhe	1,480	[m]				
Glas	Desirabatha						
Gias	Dreischeibe		[W/(m ² K)]				
	U_g	0,5	[vv/(m K)]				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	$[m^2]$	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	$[m^2]$	
	b _{unten}	0,110	[m]	A _{unten}	0,1353	$[m^2]$	
	\mathbf{b}_{mitte}	0,000	[m]	A_{mitte}	0,0000	$[m^2]$	
U,	$U_{f,oben}$	1,1340	[W/(m ² K)]				
	U _{f,seitlich}	1,1340	$[W/(m^2K)]$				
	$U_{f,unten}$	1,1340	$[W/(m^2K)]$				
	$U_{f,mitte}$	0,0000	[W/(m ² K)]				
Abstandhalter	Thermix TX	.N					
	$\Psi_{g,oben}$	0,0440	[W/(mK)]	$I_{g,oben}$	1,0100	[m]	
	$\Psi_{g,seitlich}$	0,0440	[W/(mK)]	l _{g,seitlich}	2,5200	[m]	
	$\Psi_{g,unten}$	0,0440	[W/(mK)]	l _{g,unten}	1,0100	[m]	
	$\Psi_{g,\text{mitte}}$	0,0000	[W/(mK)]	$l_{g,mitte}$	0,0000	[m]	
U _w	Ug	A_g	A _f	Ig	$\Psi_{\rm g}$	U _f	U _w
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0440	1,1340	0,8005

Fichte. Tanne $\lambda = 0.11$

Außenmaße	Breite	1,230	[m]				
	Höhe	1,480	[m]				
Glas	Dreischeibe	nisolierglas					
	U_g	0,5	$[W/(m^2K)]$				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	$[m^2]$	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	$[m^2]$	
	b _{unten}	0,110	[m]	Aunten	0,1353	$[m^2]$	
	b_{mitte}	0,000	[m]	A _{mitte}	0,0000	[m ²]	
U _f	$U_{f,oben}$	1,0160	[W/(m ² K)]				
	$U_{f,seitlich}$	1,0160	$[W/(m^2K)]$				
	$U_{f,unten}$	1,0160	$[W/(m^2K)]$				
	$U_{f,mitte}$	0,0000	$[W/(m^2K)]$				
Abstandhalter	Chromatech	1					
	$\Psi_{\sf g,oben}$	0,0590	[W/(mK)]	$I_{g,oben}$	1,0100	[m]	
	$\Psi_{\sf g,seitlich}$	0,0590	[W/(mK)]	l _{g,seitlich}	2,5200	[m]	
	$\Psi_{g,unten}$	0,0590	[W/(mK)]	l _{g,unten}	1,0100	[m]	
	$\Psi_{\text{g,mitte}}$	0,0000	[W/(mK)]	$l_{g,mitte}$	0,0000	[m]	
U _w	Ug	Ag	Aı	lg	Ψ_{g}	U _f	U _w
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0590	1,0160	0,8024

0409 | Zeichen hp/dp | Seite 6/8

Außenmaße	Breite	1,230	[m]				
	Höhe	1,480	[m]				
Glas	Dreischeibe	nisolierglas					
	U_g	0,5	[W/(m ² K)]				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	$[m^2]$	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	$[m^2]$	
	b _{unten}	0,110	[m]	A _{unten}	0,1353	$[m^2]$	
	b_{mitte}	0,000	[m]	A_{mitte}	0,0000	$[m^2]$	
U _t	$U_{f,oben}$	1,0160	$[W/(m^2K)]$				
	$U_{f,seitlich}$	1,0160	$[W/(m^2K)]$				
	$U_{f,unten}$	1,0160	$[W/(m^2K)]$				
	$U_{f,mitte}$	0,0000	$[W/(m^2K)]$				
Abstandhalter	Swisspacer						
	$\Psi_{g,oben}$	0,0520	[W/(mK)]	I _{g,oben}	1,0100	[m]	
	$\Psi_{g,seitlich}$	0,0520	[W/(mK)]	I _{g,seitlich}	2,5200	[m]	
	$\Psi_{g,unten}$	0,0520	[W/(mK)]	I _{g,unten}	1,0100	[m]	
	$\Psi_{\text{g,mitte}}$	0,0000	[W/(mK)]	$I_{g,mitte}$	0,0000	[m]	
U _w	Ug	A _g	A _f	l _g	Ψ_{g}	Uf	U _w
	$[W/(m^2K)]$	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0520	1,0160	0,7850


	0,5	1,2726	0,5478	4,5400	0,0440	1,0160	0,7650
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
u _w	U_g	Ag	A _f	l _g	Ψ_{g}	Uf	U _w
	$\Psi_{g,mitte}$	0,0000	[W/(mK)]	g,mitte	0,0000	[m]	
	$\Psi_{g,unten}$	0,0440	[W/(mK)]	l _{g,unten}	1,0100	[m]	
	Ψ _{g,seitlich}	0,0440	[W/(mK)]	l _{g,seitlich}	2,5200	[m]	
	$\Psi_{g,oben}$	0,0440	[W/(mK)]	l _{g,oben}	1,0100	[m]	
Abstandhalter	Thermix TX						
	$U_{\rm f,mitte}$	0,0000	[W/(m ² K)]				
	$U_{f,unten}$	1,0160	$[W/(m^2K)]$				
	$U_{f,seitlich}$	1,0160	$[W/(m^2K)]$				
U _f	$U_{f,oben}$	1,0160	[W/(m ² K)]				
	b _{mitte}	0,000	[m]	A _{mitte}	0,0000	[m ²]	
	b _{unten}	0,110	[m]	A _{unten}	0,1353	[m ²]	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	[m ²]	
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	[m ²]	
	U_g	0,5	[W/(m ² K)]				
Glas	Dreischeibe	nisolierglas					
	Höhe	1,480	[m]				
Außenmaße	Breite	1,230	[m]				

Lärche $\lambda = 0.15$

Außenmaße	Breite	1,230	[m]				
	Höhe	1,480	[m]				
Glas	Dreischeibe	nisolieralas					
	U_g	0,5	$[W/(m^2K)]$				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	$[m^2]$	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	$[m^2]$	
	b _{unten}	0,110	[m]	A_{unten}	0,1353	$[m^2]$	
	b _{mitte}	0,000	[m]	A_{mitte}	0,0000	[m ²]	
U _f	$U_{f,oben}$	1,2440	$[W/(m^2K)]$				
	U _{f,seitlich}	1,2440	$[W/(m^2K)]$				
	$U_{f,unten}$	1,2440	$[W/(m^2K)]$				
	$U_{\text{f,mitte}}$	0,0000	$[W/(m^2K)]$				
Abstandhalter	Chromatech	1					
	$\Psi_{g,\text{oben}}$	0,0590	[W/(mK)]	l _{g,oben}	1,0100	[m]	
	$\Psi_{g,seitlich}$	0,0590	[W/(mK)]	g,seitlich	2,5200	[m]	
	$\Psi_{g,unten}$	0,0590	[W/(mK)]	l _{g,unten}	1,0100	[m]	
	$\Psi_{g,\text{mitte}}$	0,0000	[W/(mK)]	$l_{g,mitte}$	0,0000	[m]	
u _w	Ug	A_g	A _f	lg	Ψ_{g}	U _f	U _w
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0590	1,2440	0,8710

Außenmaße	Breite	1,230	[m]				
	Höhe	1,480	[m]				
Glas	Dreischeibe	nisolierglas					
	U_g	0,5	[W/(m ² K)]				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	$[m^2]$	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	$[m^2]$	
	b _{unten}	0,110	[m]	A _{unten}	0,1353	$[m^2]$	
	b _{mitte}	0,000	[m]	A _{mitte}	0,0000	[m ²]	
U _f	$U_{f,oben}$	1,2440	$[W/(m^2K)]$				
	$U_{f,seitlich}$	1,2440	$[W/(m^2K)]$				
	$U_{f,unten}$	1,2440	$[W/(m^2K)]$				
	$U_{f,mitte}$	0,0000	[W/(m ² K)]				
Abstandhalter	Swisspacer						
	$\Psi_{g,oben}$	0,0520	[W/(mK)]	l _{g,oben}	1,0100	[m]	
	$\Psi_{g,seitlich}$	0,0520	[W/(mK)]	l _{g,seitlich}	2,5200	[m]	
	$\Psi_{ ext{g,unten}}$	0,0520	[W/(mK)]	l _{g,unten}	1,0100	[m]	
	$\Psi_{\text{g,mitte}}$	0,0000	[W/(mK)]	$I_{g,mitte}$	0,0000	[m]	
U _w	Ug	Ag	A _f	Ig	Ψ_{g}	U _f	U _w
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0520	1,2440	0,8536

0409 | Zeichen hp/dp | Seite 8/8

Außenmaße	Breite	1,230	[m]				
	Höhe	1,480	[m]				
Glas	Dreischeibe	nisolierglas					
	U_g	0,5	$[W/(m^2K)]$				
Rahmen	b _{oben}	0,110	[m]	A _{oben}	0,1353	[m ²]	
	b _{seitlich}	0,110	[m]	A _{seitlich}	0,2772	$[m^2]$	
	b _{unten}	0,110	[m]	A _{unten}	0,1353	$[m^2]$	
	b_{mitte}	0,000	[m]	A_{mitte}	0,0000	[m ²]	
U _f	$U_{f,oben}$	1,2440	$[W/(m^2K)]$				
	$U_{f,seitlich}$	1,2440	$[W/(m^2K)]$				
	$U_{f,unten}$	1,2440	$[W/(m^2K)]$				
	$U_{f,mitte}$	0,0000	$[W/(m^2K)]$				
Abstandhalter	Thermix TX	.N					
	$\Psi_{g,\text{oben}}$	0,0440	[W/(mK)]	I _{g,oben}	1,0100	[m]	
	$\Psi_{\sf g,seitlich}$	0,0440	[W/(mK)]	I _{g,seitlich}	2,5200	[m]	
	$\Psi_{\text{g,unten}}$	0,0440	[W/(mK)]	I _{g,unten}	1,0100	[m]	
	$\Psi_{\text{g,mitte}}$	0,0000	[W/(mK)]	$I_{g,mitte}$	0,0000	[m]	
U _w	U_g	A_g	A _f	lg	Ψ_{g}	U _f	U _w
	[W/(m ² K)]	[m ²]	[m ²]	[m]	[W/(mK]	[W/(m ² K)]	[W/(m ² K)]
	0,5	1,2726	0,5478	4,5400	0,0440	1,2440	0,8336

7 Zusammenfassung der Ergebnisse

Der Uw Wert des gesamten Fensters ist größenabhängig. Die berechneten Werte beziehen sich auf einflügelige Elemente mit den Rahmenaußenmaßen 1230 mm x 1480 mm. Der ermittelte Uw Wert gilt somit nur für diese Abmessung.

Akkr. Prüf- und Inspektionsstelle gbd Lab GmbH www.gbd-lab at Steinebach 13a A-6850 Dornbirn Günter Ettlinger

Zeichnungsberechtigter

Anlagen:

Anlage -1-Berechnungen Uf Werte 7 Seiten

Schnitte